
Register Allocation via Graph Neural Networks
Project Report for EECS 583: Advanced Compilers (Fall 2023)

Anuj Tambwekar, Austin Nguyen, Creighton Glasscock, Jacob Sansom
{anujt, ngaustin, creiglas, jhsansom}@umich.edu

Computer Science and Engineering
University of Michigan, Ann Arbor

Abstract—Register allocation is a critical component of any
compiler and remains primarily heuristic-driven. Viewing regis-
ter allocation as a graph coloring problem opens up multiple
possibilities for improving allocation strategies. Still, the NP-
Hard nature of the graph coloring problem makes coming up
with efficient solutions challenging. In this project, we use graph
neural networks to color interference graphs and obtain physical
register assignments for virtual registers. More formally, given an
interference graph G, and a fixed number of colors K, our GNN
algorithm colors each node of G with one of the K colors, such
that no two connected nodes are colored the same color, while
attempting to minimize the number of spills needed to ensure the
coloring is valid. We find that while our approach outperforms
random coloring, it is still frequently outperformed by Chaitin’s
algorithm. However, we do find that we can outperform Chaitin’s
occasionally on smaller graphs with low values of K.

I. INTRODUCTION

Register allocation is the process of mapping virtual regis-
ters in the intermediate representation of code to a physical
hardware register. LLVM has two main register allocators
built-in - linear scan and greedy. Both these algorithms
compute live ranges of variables but do not explicitly treat
the problem as a graph coloring problem. Rather, they use
queues of live ranges and assign registers to them based on an
available pool, checking to see if an assignment can be done
using the available registers or if the virtual register must be
spilled to memory.

Chaitin’s algorithm approaches register allocation as a con-
strained graph coloring problem. Virtual registers are treated as
graph nodes, with edges between nodes indicating overlapping
live ranges. This graph, known as the interference graph, is
then colored using K colors, where K is the number of
physical registers available for the algorithm to use. Chaitin’s
algorithm uses a greedy approach to first color nodes of
higher priority. This priority is computed using profile data, but
measuring the number of lines over which the virtual register
is accessed and dividing it by the number of virtual registers
it overlaps with. While Chaitin’s algorithm is efficient, its
priority mechanism is built on having profile data. The greedy
nature of the algorithm can result in suboptimal coloring,
particularly when profile data is unavailable for prioritization.

In this project, we propose that Graph Neural Networks
(GNNs) can decrease our reliance on profile data and perform
efficient register allocations without the need for a fully
heuristic-driven algorithm. By using a combination of spectral

embeddings and soft-kmeans clustering, we train a graph
neural network to cluster nodes of a graph into groups based
on their distance across the graph, with nodes that are farther
apart in the graph being closer together in embedding space.
These clusters of nodes are then mapped to physical register
labels where we choose to assign nodes to a particular register
or spill it instead.

II. BACKGROUND AND RELATED WORK

A. Machine learning for register allocation

Machine learning for register allocation is a new emerging
topic of interest. The most recent approaches can be split into
reinforcement learning-based algorithms and deep-learning
approaches. In the reinforcement learning approaches [1], [2],
an agent learns to estimate an optimal sequence of actions
by multiple rounds of self-play. [1] explicitly targets an RL
technique for register allocation in LLVM, whereas [2] uses
RL to tackle the graph coloring problem at large. These
approaches are usually computationally expensive and rather
demanding, resulting in long compile times. However, [1] is a
relatively new work that does show a lot of promise. The deep-
learning approaches operate on the entire interference graph
and aim to create a machine-learning model that can map an
input graph to a set of colors. [3] is our main reference for
this approach. They use an LSTM [4] model that captures
the history and sequential relationships between nodes. By
modeling the graph as a sequence of adjacency vectors, their
approach converts a sequence of adjacency vectors into a
sequence of colors. While their approach did achieve lower
total register usage compared to LLVM’s register allocation,
the training regime of this sequence modeling approach is
flawed as it fails to preserve the equivariance of a coloring. In
a register allocation scenario, the final color given to a node is
not important - the set of nodes with the same color determines
the efficiency of the approach. The LSTM-based sequence
modeling approach is unable to capture this invariance. As
such, in this project, we focus on a method aimed at creating
groups of nodes, where the learning objective is to learn how
to group nodes together into the same color, as opposed to
worrying about what color the group must be assigned.

B. Graph Neural Networks

Graph Neural Networks are a subset of neural networks
designed specifically to operate on graphs by being permuta-

tionally equivariant. The input to the GNN is a set of vertices
and edges, and the GNN’s primary objective is to obtain
embeddings for these nodes for further use in downstream
tasks, such as classification or clustering. GNNs have two key
types of layers - message passing layers and pooling layers.
Message-passing layers connect nodes together by performing
a permutation invariant operation on the features of all adjacent
nodes. Simply put, the message passing layer aggegrates all the
information around a node. This message-passing step can be
repeated across multiple layers, creating a mechanism similar
to the forward pass of a regular deep learning layer, with
the additional benefit of being invariant to the order of the
features. The pooling layers are similar to those found in a
convolutional network and allow downsampling of the features
in the message-passing layer.

III. USING GNNS FOR REGISTER ALLOCATION

A. GNN Architecture

The GNN architecture begins by converting a graph into a
set of spectral embeddings, one per node. Spectral embeddings
are equivariant over node permutations, meaning that the
order in which nodes are labeled imparts no difference on
the end result of the coloring. These spectral embeddings
are then fed into a transformer model—a popular neural
network architecture for arbitrary-length sequences—to yield
one embedding per node. Finally, a soft K-means clustering
algorithm is used to group these embeddings into K distinct
groups, which subsequently become our colors. Unlike a
conventional K-means clustering algorithm, soft K-means
provides a probability value for each embedding-cluster pair
representing the probability that the embedding belongs to the
cluster. The coloring itself can be obtained by simply choosing
the most probable color for each node.

To train this network, we utilize a loss function that pe-
nalizes the network for assigning bad colors and rewards it
for assigning good colors. In particular, we define a node’s
color as ”good” if it has no neighbors assigned the same color.
Accordingly, a ”bad” color occurs when a node has at least one
neighbor assigned the same color. The intention behind this
approach is to teach the network how to create embeddings
that, when clustered, induce a good coloring. The loss function
is shown in Equation 1 and the overall training algorithm is
shown in Algorithm 1.

L(θ) = −
∑
i∈G

logP (c|ni) +
∑
i∈B

logP (c|ni) (1)

In the above equation, G and B refer to the sets of good and
bad nodes, respectively. The probability values P (c|ni) are the
probability assigned to color c for node ni. Simply described,
this loss function minimizes the probability assigned to all
bad colors and maximizes the probability assigned to all good
colors.

At testing time, the algorithm feeds the trained model Gθ

an adjacency matrix A and executes Soft K-Means on the
outputted embeddings Vθ to produce an initial coloring C,

Algorithm 1 GNN Training Algorithm
Inputs: Adjacency Matrix Dataset M, Number of Physical
Registers K, Epochs E
Outputs: Trained Model Gθ

for Epochs E do
Get randomized data loader D(M)
for adjacency matrix batch {Ai}bi=1 ∼ D do

Get embeddings Vθ = Gθ({Ai}bi=1)
Calculate L(θ) using SoftKMeans(Vθ) and Equation 1
θ = θ −∇L(θ)

end for
end for

assigning the highest probability color for each node. Note
that the coloring C may not be a valid coloring; there is no
mechanism to ensure that neighboring nodes are not assigned
the same color. As a result, we must apply corrections, which
we opt to do by spilling any nodes with similarly colored
neighbors in order of spill cost (lower spill costs first). The
process is repeated for each color until the mapping C is a
valid coloring. This is detailed in Algorithm 2.

Algorithm 2 GNN Test-time Logic
Inputs: Trained Model Gθ, Adjacency Matrix A , Number of
Physical Registers K, Spill Costs C
Outputs: Coloring Map C, Spill Set S

1: Get embeddings Vθ = Gθ(A)
2: Get initial coloring C =SoftKMeans(Vθ)
3: Initialize spill set S = ∅
4: for each color c of total K do
5: Define Vc where v ∈ Vc ⇔ C[v] = c
6: while any virtual registers with color c are neighbors

do
7: vmin = argminv∈Vc

C[v]
8: C[v] = spill
9: S ← S ∪ v

10: end while
11: end for

return Coloring C

B. Training Pipeline

To train this GNN, we use randomly-generated synthetic
graphs. For each synthetic graph, we let our GNN obtain
a soft coloring, and then we use the loss function outlined
in Equation 1 to adjust the GNN weights to improve future
performance.

When creating graph colorings, it is reasonable to assume
we will only be dealing with graphs where each node is only
connected to at least one other node. In the event that a real-
world graph did not possess this property (i.e., at least one
node in the interference graph is an “island”, overlapping with
no other live range), it could be assigned an arbitrary color

without spilling. Thus, we only generate graphs where each
node is connected to at least one other node.

C. Extracting Interference Graphs from Code

While synthetic graphs are sufficient for training our model,
synthetic graphs are not necessarily sufficient for the validation
step. The synthetic graphs cannot be assumed to be perfectly
representative of real interference graphs in characteristics
such as rank, sparsity, and so on. As such, in order to
demonstrate how our GNN specifically performs on register al-
location tasks, rather than just generic graph-coloring tasks, it
is necessary that we validate our model on interference graphs
generated from real code. While there do exist several datasets
for general graph-coloring approaches, to our knowledge, there
is no publicly available dataset consisting of representative
interference graphs for the study of benchmarking register
allocation approaches.

Given this lack of availability, we found it necessary to
develop a novel pipeline involving a custom LLVM pass in
order to generate these real interference graphs from any
repository of source (.c) files. Our LLVM pass generates an
adjacency matrix representation of the interference graph of
any given source file. This pass is divided into three parts:
live range analysis, instruction frequency analysis, and matrix
creation.

A virtual register’s live range is defined as the instructions
in the intersection of its liveness and reaching definition sets.
Both of these sets were manually constructed using classical
methods (GEN, KILL, IN, OUT sets) and combined to create
each live range. Static-single assignment (SSA) allowed some
simplications in our code. For example, KILL sets for reaching
definitions were set to the empty set, as SSA enforces that
a virtual register can only be assigned to once, implying its
definition can never be killed.

With live ranges constructed, the pass then determines
edges, edge weights, and node spill costs. An edge between
two nodes is present when there is a non-empty intersection
between the two corresponding live ranges. Edge weights are
calculated by multiplying each instruction in the intersecting
live ranges each by their execution frequencies (provided
by LLVM’s Block Frequency Information) and summing the
result. Node spill costs are similarly calculated: multiplying
each instruction in a live range by their execution frequencies
and summing the result.

The last step of the LLVM pass is to populate the adja-
cency matrix. Our adjacency matrix is slightly different from
common convention. Diagonal elements denote the spill costs
of nodes while off-diagonals denote the edge weights. For
example, entry (i, j) corresponds to the edge weight between
node i and j. If there is no edge between two nodes, the entry
has value -1. We allow edge weights to have weight 0, which
corresponds to a non-empty intersection of live ranges that was
never executed during profiling. This case must be accounted
for as a lack of execution in profiling does not imply its lack of
execution in subsequent runs. This adjacency is subsequently
written to a file for later use by the GNN training pipeline.

Algorithm 3 Interference Graph Generation
Inputs: InstructionFrequencyInformation IFI , Number
Virtual Registers n
Outputs: Adjacency Matrix A

1: Initialize live L, reaching definition D, and live range R
sets to ∅.

2: Initialize spill cost C and edge weight E sets to ∅.
3: Initialize empty square matrix A of size n
4: for v virtual register do
5: L[v]← LiveAnalysis(v)
6: D[v]← ReachingDefsAnalysis(v)
7: R[v]← L[v] ∩ D[v]
8: end for
9: for (v, u) pair of virtual registers do

10: Rvu ← R[v] ∩R[u]
11: Execution frequency E ←

∑
i∈Rvu

IFI(i)
12: if v = u then
13: L[v] = E
14: else
15: E [v][u] = E
16: E [u][v] = E
17: end if
18: end for
19: for entry Aij in A do
20: if i = j then
21: Aii ← L[i]
22: else
23: if Rij = ∅ then
24: Aij = −1
25: else
26: Aij = E [i][j]
27: end if
28: end if
29: end for

return Adjacency Matrix A

Method Performance
Random 0.681
Chaitin 0.417

GNN (Ours) 0.517
TABLE I

AVERAGE NUMBER OF SPILLED NODES FOR A DATASET OF SYNTHETIC
GRAPHS WITH LESS THAN 10 NODES.

This graph generation is executed on a repository of source
(.c) files provided by LLVM’s test suite [5]. This test suite
is comprised of programs designed to benchmark LLVM per-
formance (efficiency, compilation speed, etc.). The combined
pipeline is shown in Figure 1 below.

IV. RESULTS

A. Results on Synthetic Interference Graphs

Table I reports the average number of spilled nodes for a
dataset of synthetic graphs with less than 10 nodes and we fix
the number of physical registers (colors) to 3. In this case, our

Fig. 1. Our approach’s training pipeline can be divided into two parts: graph generation and model training. The former takes a dataset of source (.c) files
and generates interference graphs using live range analysis and profiling data. The latter feeds generated adjacency matrices into a GNN and Transformer
model to output graph colorings using Soft K-Means and a color correction scheme. Note that color correction is only executed at test time.

Method Performance
Random 0.876
Chaitin 0.430

GNN (Ours) 0.778
TABLE II

AVERAGE NUMBER OF SPILLED NODES ON THE LLVM-GENERATED
DATASET OF INTERFERENCE GRAPHS.

GNN approach tends to outperform random coloring but falls
slightly short of Chaitin’s performance.

While these results do not support that our approach is
necessarily successful, increased performance over random
coloring does suggest that the GNN architecture is extracting
some useful information. This claim is limited, in the sense
that performance is not striking nor better than the chosen
benchmark. Regardless, this is a promising signal that ap-
proaches similar to ours can be utilized with possible tuning,
architectural changes, or dataset choices.

V. RESULTS ON REAL INTERFERENCE GRAPHS

Table II reports the average number of spilled nodes for a
dataset of interference graphs generated by our custom LLVM
pass. Chaitin’s algorithm outperforms our approach by a more
significant margin when compared to that on synthetically
generated graphs. It is of note that the GNN still outperforms

random coloring in this case, against suggesting that the
architecture is somewhat informed in its decisions.

Our limited results could be attributed to many factors. First,
our training dataset is relatively small (around 250 interference
graphs), meaning that the GNN has an extremely limited
amount of resources to extract information from. Future work
could be dedicated to increasing this dataset to measure how
much that affected performance. Secondly, we opted for a fully
unsupervised learning approach where, in actuality, a semi-
supervised approach may be beneficial. For example, utilizing
Chaitin’s output to inform how our GNN could improve on
such colorings would be an interesting approach to consider.

A. Successful Examples

There are cases in which our GNN achieves a preferable col-
oring, i.e. with fewer spills, compared to Chaitin’s algorithm.
We find this to occur on occasion for smaller graphs with fewer
colors. Below, we compare the results on the interference
graph generated from the source file sse.shift.c in the LLVM
Test Suite, of which the source code is shown below:

i n c l u d e <emmin t r i n . h>
i n c l u d e <s t d i o . h>

t y p e d e f union {
m128i V;

i n t A [4] ;

} IV ;

s t a t i c vo id p r i n t I V (IV *F) {
p r i n t f (”%08x%08x%08x%08x\n ” ,

F−>A[0] ,
F−>A[1] ,
F−>A[2] ,
F−>A [3]) ;

}

i n t main () {
m128i a l l o n e s = mm set1 epi32 (0) ;
m128i ze roones , o n e z e r o s ;

a l l o n e s = mm cmpeq epi32 (a l l o n e s , a l l o n e s) ;
z e r o o n e s = mm sr l i ep i16 (a l l o n e s , 8) ;
p r i n t I V ((IV*)& z e r o o n e s) ;
o n e z e r o s = m m s l l i e p i 1 6 (a l l o n e s , 8) ;
p r i n t I V ((IV*)& o n e z e r o s) ;
re turn 0 ;

}

The colored interference graphs are shown below. In both
the them, nodes colored black represent spilled nodes.

Chaitin’s coloring for the sse.shift.c interference graph is
shown above. The two black nodes were each assigned by
Chaitin’s algorithm as the same color of one of their neighbors,
and thus were forced to spill.

In contrast, our GNN’s coloring for the same graph is shown
above. The coloring created by our GNN resulted in one fewer
spilled node than the coloring created by Chaitin’s algorithm
with the same number of colors.

VI. CONCLUSION AND AREAS FOR IMPROVEMENT

In this project, we show that a graph neural network
approach for graph coloring has limited success in register
allocation. We see that our approach outperforms random
coloring but does not outperform Chaitin’s algorithm, par-
ticularly on real interference graphs. Occasionally, however,
we do find that our approach can outperform Chaitin’s on
small graphs with a low number of physical registers. These
results do indicate some promise for GNN-based register
allocation. Some future investigations could focus on the effect
of dataset size on performance or interweaving deep learning
approaches with procedural algorithms like Chaitin’s. Other
future extensions to this work could include finding a way to
partition graphs into smaller subgraphs to find more effective
ways of generalizing across graphs.

REFERENCES

[1] S. VenkataKeerthy, S. Jain, A. Kundu, R. Aggarwal, A. Cohen, and
R. Upadrasta, “Rl4real: Reinforcement learning for register allocation,”
in Proceedings of the 32nd ACM SIGPLAN International Conference
on Compiler Construction, ser. CC 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 133–144. [Online].
Available: https://doi.org/10.1145/3578360.3580273

[2] J. Huang, M. M. A. Patwary, and G. F. Diamos, “Coloring big
graphs with alphagozero,” CoRR, vol. abs/1902.10162, 2019. [Online].
Available: http://arxiv.org/abs/1902.10162

[3] D. Das, S. A. Ahmad, and V. Kumar, “Deep learning-based approximate
graph-coloring algorithm for register allocation,” in 2020 IEEE/ACM
6th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC) and Workshop on Hierarchical Parallelism for Exascale Computing
(HiPar), 2020, pp. 23–32.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, nov 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[5] “GitHub - llvm/llvm-test-suite — github.com,”
https://github.com/llvm/llvm-test-suite, [Accessed 13-12-2023].

