
End-to-End Reinforcement Learning for
Black-Box Adversarial Text Generation

Austin Nguyen * 1 Shreyas Chandrashekaran * 1 Joan Nwatu * 1

Abstract
Adversarial attacks significantly reduce the accu-
racy of language models by making them consis-
tently produce erroneous predictions when given
text input that has been altered on a character,
word, or sentence level. With the ubiquity of lan-
guage models in today’s world, it is increasingly
important to codify approaches to both attacking
and defending such models to understand a future
threat model. In our work, we formulate the task
of creating adversarial examples as a reinforce-
ment learning problem. We train an RL model to
fool a SOTA pre-trained RoBERTa-Base language
model finetuned on the AG news classification
dataset with the aim of achieving high attack per-
formance comparable to existing attack methods
on this task. While we fall short of this goal, we
suggest possible reasons for our outcomes and
future directions.

1. Introduction
The field of adversarial machine learning originated in com-
puter vision applications. Research like Szegedy et al.
(2014) and Goodfellow et al. (2015) show that the addition
of small imperceptible perturbations to image inputs causes
misclassification in deep learning models for computer vi-
sion, showing that these models lack robustness and are in
fact quite brittle. Most adversarial work has focused on
computer vision due to both the continuous nature of image
modalities and the clear visual perceptibility of adversarial
vision results.

In the field of NLP, Jia & Liang (2017) investigated the
robustness of models for natural language processing using

*Equal contribution 1Department of Computer Science Engi-
neering, University of Michigan, Ann Arbor, MI, United States
of America. Correspondence to: Shreyas Chandrashekaran
<shreyasc@umich.edu>, Joan Nwatu <jnwatu@umich.edu>,
Austin Nguyen <ngaustin@umich.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

adversarial examples. Adversarial approaches to NLP must
necessarily be formulated differently from those used in
computer vision due to the differences between the nature of
input in both modalities (Zhang et al., 2019). Image data are
represented by pixel values which are continuous, while tex-
tual data are discrete in nature. Therefore, while perturbed
images manifested real image outputs, perturbed textual
representations yield invalid or incoherent text outputs. To
overcome these limitations, NLP adversarial examples are
created using perceptible changes to text inputs in the form
of character-level, word-level, or sentence-level alterations.

Adversarial examples for language models have been proven
to exist (Wang et al., 2022) (Morris et al., 2020) (Jin et al.,
2019) and have been shown to lower the performance of
these models. This area has grown significantly in research
interest as language models become commonplace in to-
day’s enterprise environments (Liu et al., 2023).

In our work, we train a Reinforcement Learning (RL) model
using the Double Deep-Q Network (DDQN) algorithm first
presented by Hasselt et al. (2016) to produce adversarial
examples of the AG news dataset (Zhang et al., 2015) to
cause misclassification on a high-performing news topic
categorization model. By applying budget constraints such
that we limit our model to only making a certain number
of target queries, we test the efficiency of our method in
different setups, attempting to ameliorate the black-box
adversarial NLP shortcoming of high model querying cost.

Our results show that we are able to achieve limited suc-
cess with multiple iterations of training, but that our model
fails to generalize to unseen data, suggesting that no posi-
tional replacement pattern exists or that further training is
necessary.

2. Related Work
The AG news corpus introduced by Zhang et al. (2015)
has been used by many applications, especially text clas-
sification. It has previously been used in both adversarial
attacks by Yang et al. (2023) and defenses such as Wang
et al. (2020).

Mastering this corpus for various NLP functions remains
a central task toward a unified understanding of language

End-to-End Reinforcement Learning for Black-Box Adversarial Text Generation

since news is a notoriously difficult domain to parse, owing
to its to specialized vocabulary. Previous works such as
Yang et al. (2023) focused primarily on preserving seman-
tics by minimizing modification cost, which they did by
prioritizing both replaceable words and candidate replace-
ments. They achieve quite high attack success rates – in
fact, higher than all other adversaries in this domain, so we
mainly compare our methods to theirs. Instead of build-
ing a custom reward function and focusing on modification
cost, we use reinforcement learning to learn a generalizable
method to generate adversarial examples.

Other works such as Alzantot et al. (2018) generate adver-
sarial examples for sentiment analysis by picking the top k
similar embeddings based on a particular embedding frame-
work and selecting the replacement that results in the highest
accuracy of the incorrect class. This results in k calls to the
downstream model with all possible candidates to ascertain
the highest-scoring selection. While we do select synonyms
in a similar way to this work, our replacement selection
process differs.

In terms of reinforcement learning approaches to adversar-
ial example generation, Wong (2017) used the Sequence to
Sequence (Seq2Seq) model (Sutskever et al., 2014) and RE-
INFORCE algorithm (Sutton et al., 1999) to rewrite input
text to both preserve semantic similarity and force incor-
rect classification on the simpler spam classification task.
Buck et al. (2017) used a similar approach to reformulate
questions to boost the performance of question-answering
models, finding that reformulated questions by this method
are quite different from traditional NLP paraphrases.

Maimon & Rokach (2022) is very similar to our approach
in terms of the use of reinforcement learning to select the
best adversarial examples. However, this work focuses on
the task of creating adversarial examples using a universal
adversarial policy for movie review classification and re-
ports an Attack Success Rate (ASR) of 0.3 on a hand-picked
subset of examples, so it is difficult to produce a one-to-one
comparison between our findings and theirs.

3. Approach
We opt to use RoBERTa-Base, one of the BERT family
of models (Devlin et al., 2019), and the DDQN algorithm
(Hasselt et al., 2016) in our work. Our approach models
adversarial text generation as a Markov Decision Process,
where states are characterized by the currently perturbed
sentence. Actions are defined discretely, where each action
corresponds to switching one of the words in the sentence
with a different one. Rewards are structured to encourage
the agent to find adversarial texts in the minimal number
of actions, or word swaps, which is the main difference
between our approach and that of Jin et al. (2019). We next

outline each of the aspects of the algorithm in detail.

3.1. Word Candidate Generation

For each input sentence, we define each action as swapping
out one of the words in the sentence. More specifically,
given a set of legal actions {ai}n+1

i=1 , ai corresponds with
switching out the ith swappable word in the sentence. We
also insert an action an+1 that corresponds to a ”Stop” ac-
tion. This corresponds to exiting the MDP and returning
the current sentence st as an adversarial example. Note that
ai does not necessarily correspond to the ith word in the
sentence. Some words in the sentence are not considered
candidates to be swapped out. More specifically, we keep a
list of stop words considered ineligible as candidates. These
stop words consist of various pronouns, prepositions, arti-
cles, or any tokens deemed insignificant for natural language
processing.

We have shown how to determine which words in the sen-
tence are swappable. The next step is to show how to retrieve
word candidates to swap each word with. The eligible words
are passed into an embedding space using Counter-Fitted
Glove Embeddings (Mrkšić et al., 2016). Then, we retrieve
the N nearest neighbors in embedding space for each of
the words to generate a finite number of synonyms for each
word. These words are the candidates for swapping.

We also insert an additional constraint when selecting possi-
ble words to replace. When retrieving the nearest neighbors,
we choose to only select a certain number of words that
have minimal overlap in characters with the original word.
This prevents the replacement word from being simply the
original word in a different tense. In our experiments, we
conduct experiments with and without this additional con-
straint.

The entire word candidate generation process is shown in
Algorithm 3.1.

Algorithm 1 Word Candidate Generation
for each word w in sentence s not in stop word set S do

if w ∈ S then
l = []

else
Create list l = []
Get word embedding w′ for w
select list c of N nearest neighbors to w′

for each candidate in c do
if overlap(c,w) < allowed overlap then

append c to l

return Dictionary {w: list l}

End-to-End Reinforcement Learning for Black-Box Adversarial Text Generation

3.2. Reward Function

The reward is a function of the state, action, and the next
state: r(s, a, s′). The reward function is intended to priori-
tize three aspects: getting closer to an adversarial example,
finding an adversarial example, and using the least number
of actions. Therefore, we create a reward function that is a
linear combination of these three aspects. First, we define
rscore as the difference between the original-label logit of
the target model between the two sentences:

rscore = T (s)− T (s′) (1)

where T is a function mapping an input sentence to the
target model’s output ground label logit for that sentence.

Next, we define λs as a scalar reward for successfully find-
ing an adversarial sentence and is 0 if not. This can only be
achieved by taking the action astop in the state s where s is
an adversarial example. Lastly, λconstant is a small, nega-
tive scalar that penalizes the agent for taking too many steps
to be successful. The total reward function is summarized
below, where λscore is a hyperparameter.

r(s, a, s′) = λscorerscore + λconstant + λs (2)

3.3. Model Architecture

The model architecture for our reinforcement learning ap-
proach is shown in Figure 1. After standard preprocessing
and cleaning, input sentences are tokenized and converted
into GloVe embeddings (Pennington et al., 2014). We then
obtain the candidate words and convert them to their embed-
dings correspondingly. We introduce a list of indicators, a
one-hot vector of length equal to the number of tokens in the
sentence used to match sentence-level tokens to swappable
candidates. Suppose the first nonzero value is located at the
jth position of the indicator vector – this communicates that
the first candidate word passed in is associated with the jth

token in the sentence.

The sentence and candidate embeddings are then passed
into an LSTM. The outputs from each of the words in the
sentence and candidates are passed into separate fully con-
nected layers, with the addition of the indicator vector. Then,
the entire output is concatenated and passed through a final
Multi-Layer Perceptron (MLP).

3.4. Reinforcement Learning Algorithm

The reinforcement learning model takes a string represent-
ing the current sentence state, the swappable word candi-
dates, and indicators telling the network which words corre-
spond to which indices in the sentence. In order to solve the
MDP, we decide to use the DDQN algorithm to optimize

Figure 1. The model architecture consists of two LSTM modules,
respectively taking the sentence embeddings and word embeddings,
two fully connected layers that take in the indicator variables, and
a multi-layer perception to output a probability distribution over
actions. In the case of the Q-network, the outputs correspond to
the Q-values for each action, where an ε -greedy policy is used.

the rewards shown in Equation 2. A training loop is first
executed with a set number of training sentence examples to
transform. After a certain number of epochs E of training,
an evaluation loop is constructed where we measure the
attack’s ASR on both the training set and additional, unseen
testing data.

The DDQN algorithm is outlined in Algorithm 2.

3.5. Adding Constraints

We also wanted to experiment with constraining the number
of words we were allowed to swap within each sentence.
The implementation previously discussed simply allowed
the policy to switch out as many words as was allowed by
the sentence when limited by the list of stop words. How-
ever, we wanted to see if constraining the action space to
only L(s) actions would achieve similar results with the
added benefit of lower cost. The number of actions L(s) is
a function of the original sentence. We let L be a hyperpa-
rameter denoting the maximum number of swappable words
and define L(s) = max(L, num swappable(s)).

Next, we show how we select the L(s) swappable words
from s. We take inspiration from Jin et al. (2019), and mask
each of the swappable tokens s[i] with the < unk > token
one at a time. This results in num swappable(s) sentences.
We then query each of these sentences into the target model
and gather the ground truth label’s logit changes. We then
take the top L swappable words that had the highest absolute
effects on the logits. The formal approach is outlined in
Algorithm 3.

4. Experiments and Results
4.1. Effects of Excessive Training

One of the first difficulties of training was the susceptibility
of the model to plummet in performance after a certain
number of training epochs. This is not an unheard-of issue

End-to-End Reinforcement Learning for Black-Box Adversarial Text Generation

Algorithm 2 DDQN Training Algorithm
Input: Input sentence s0, Q-network Qθ, Target Q-network

Qθ′ , Empty buffer B, discount factor γ, target update
frequency T

1 for number of epochs do
2 for each original sentence si0 do
3 for each timestep t do
4 Wi

t = WordCandidates(sit) from Algorithm 3.1
Ii = Indicators(sit)
se, we = Embeddings(s, W)
at = EpsilonGreedy(Qθ(se, we, I))
Apply at to sit −→ sit+1

rt = r(st, at, st+1) from Equation 2
d = is 1 if at == STOP
Store transition (sit, at, rt, s

i
t+1, d)

5 if Update the model then
6 Sample batch b = (s, a, r, s′, d) ∼ B

Qtar = r + γQθ′(s′, argmaxaQθ(s
′, a))

Qpred = Qθ(s, a)
J(θ) = MSE(Qpred, Qtar)
θ = θ −∇J(θ)

7 if Update target model every T then
8 θ′ = θ

Algorithm 3 Adding Constraints
Input: options = empty maxheap (sorted by value), sen-

tence s, target model M
9 for swappable token s in swappable token set do

10 sm = sentence, mask s with unk
f = M(sm) - M(s)
add (key=s, value=|f |) to options

11 return options[:N]

when training deep reinforcement learning models, but the
brittleness was particularly noticeable here. In Figure 2, we
show how there is a drastic drop in both rewards and ASR
after around 220 epochs of training. Note that these metrics
are reported on the training dataset itself.

Figure 2. Training curves for different batch sizes on 50 training
examples for 400 epochs. The ASR is averaged over 20 epochs
while the rewards are averaged over 100. The results highly justify
stopping training early.

As we will show later on, this instability is likely due to
the large, discrete action space of the task. The model is
provided a mask on the output logits to know which ac-
tions are valid. This is needed as some sentences may have
fewer swappable words than the number of output actions
from the model. Even then, some sentences with a large
number of swappable words face an issue where, as train-
ing progresses, the distribution of actions becomes highly
concentrated on a small subset of actions. This is simply
due to the convergence of the algorithm and annealing of
the epsilon exploration. However, this shift in distribution
makes other, less likely chosen actions to be increasingly
inaccurate in their Q-value predictions. This problem is
exacerbated by a large action space. As a result, this causes
training instability towards the end as gradients for less
likely transitions are far higher than more likely ones.

All subsequent experiments have been tuned so that the algo-
rithm halts at the optimal epoch. The data from tuning each
of the experiments is omitted from the report for brevity.

End-to-End Reinforcement Learning for Black-Box Adversarial Text Generation

Hyperparameters
Epochs Varies

Learning Rate 3e-4
Gamma .975

Batch Size 128
Max Length Rollout 250

Warm Up Steps 2e5
Update Target Frequency 5000

Max Buffer Size 3e5
Epsilon Initial 1
Epsilon Final .1
Epsilon Steps 1e5

λscore 100
λconstant -.02

λs 10
LSTM Hidden Layer Size 128

LSTM Num Hidden Layers 1
LSTM Output Size 200

MLP Width 200
Optimizer Adam

Figure 3. Hyperparameters used for all experiments unless other-
wise specified.

4.2. Without Budget Constraints

Here, we show the results of the algorithm on a training
set of 50 input sentences from the Roberta-base AG News
dataset. We also performed a parameter search in order
to find the most optimal training parameters in terms of
training time and reward garnered. The optimal parameters
found are enumerated in Figure 3.

In Figure 4 we show the training trajectory and final perfor-
mance of the adversarial agent. Note that this agent uses
sentence transformations where each word is the nearest
neighbor to the original word’s embedding. Future sections
will go over results when we enforce additional characteris-
tics of the replacement word as described in Section 3.5.

We note a strong positive correlation between rewards per
episode and the attack success rate over training epochs.
This indicates that the agent’s optimization over the rewards
successfully entails better sentence example generation, as-
suming adversarial examples are possible given the word
candidates. It is difficult to say whether the relatively low
ASR can be attributed to the learning process or to the word
candidate choices themselves. We investigate this in a fu-
ture section. As shown in the previous section, training
was incredibly fickle. The training trend likely would have
plummeted shortly after stopping it early.

The final results for the two runs are shown in Figure 5.
The run where the batch size of 128 had a stronger final
performance than that of the batch size of 64. This is likely
because of lower variance updates to the Q-network policy.

Figure 4. Training curves for different batch sizes on 50 training
examples for 220. The ASR is averaged over 20 epochs while the
rewards are averaged over 100. We cut off training at 220 epochs
in order to prevent the aforementioned plummet in performance.

However, even then, we only reach an ASR of 12%. Even if
there are signs of learning, this low ASR can be attributed
to two different things. Firstly, the method by which we
are choosing the word candidates. As elaborated earlier, we
still have yet to remove candidates that are far too similar to
the original words. The RL method is only as powerful as
the word options it is given, so this would be a promising
way to improve performance. Furthermore, it is possible
that the action space is currently too large to efficiently
explore. Adding budget constraints as mentioned in Section
4.5 would be helpful.

We also provide a few example perturbations that the policy
generates in Figure 4.2. Note that many of the generated

Testing Results
Batch Size 64 128

Original Accuracy 98% 98%
Accuracy Under Attack 90% 86%

ASR 8.16% 12.24%
Average Perturbed Word % 12.84% 13.23%

Figure 5. Testing result after varying the batch size between 64 and
128 and training on 50 examples for 220 epochs. The final testing
set is identical to the training set in this experiment.

End-to-End Reinforcement Learning for Black-Box Adversarial Text Generation

Example 1
Original Sentence: Teenage T. rex’s monster growth
Tyrannosaurus rex achieved its massive size due to an
enormous growth spurt during its adolescent years.

Perturbed Sentence: Teenage T. rex’s monster growth
Dinosaur rex attained its massive size due to an immense
growth spurt during its adolescent years.

Example 2
Original Sentence: Rivals Try to Turn Tables on Charles
Schwab By MICHAEL LIEDTKE SAN FRANCISCO (AP)
– With its low prices and iconoclastic attitude, discount
stock broker Charles Schwab Corp. (SCH) represented
an annoying stone in Wall Street’s wing-tipped shoes for
decades...

Perturbed Sentence: Rivals Try to Turn Tables on Charles
Schwab By MICHAEL LIEDTKE SAN FRANCISCO (AP)
– With its scant prices and iconoclastic attitude, discount
stock broker Charles Schwab Corp. SCH represented an
pesky stone in Wall Street’s wing-tipped shoes for decades...

Figure 6. Examples of successfully perturbed texts. While swap-
ping words with ones with similar meanings may seem promising,
it may not preserve grammatical correctness.

adversarial examples were intended to preserve semantic
meaning. However, does not imply preservation of gram-
matical structure nor correctness. Swapping at the word
level, without consideration of surrounding context, can
yield sentences that, although the individual word may be
similar, are no longer grammatically accurate.

4.3. Testing on Unseen data

It is important to note that the previous results are still show-
ing performance on the training data; all metrics on reward
and ASR have been with respect to already seen data. As
the purpose of this method is to see whether reinforcement
learning can be used to find patterns that may generate adver-
sarial examples for a particular model, it is vital we separate
the given data into training and testing environments.

As a result, we split the dataset as follows: 50 training
sentences and 70 testing sentences, where the latter includes
the training sentences as well. In other words, there are 20
sentences that were unseen in the training process. We show
the training curves of this approach on the test set in Figure
7 along with the final performance in Figure 8.

Unfortunately, our approach is unable to generalize to un-
seen data. While it is a common problem that deep rein-
forcement learning methods tend to overfit their given data,
we believe there must be some mechanism that allows for

Figure 7. Training curves for the experiment where we train for
the evaluation on unseen data. ASR is averaged over 10 epochs
while returns are averaged over 100.

the RL agent to detect patterns within the data to best exploit
new sentence examples. Future work that could address this
issue would be to introduce auxiliary tasks that force the re-
inforcement learning agent to recognize token-level patterns.
Another way would be to introduce a different state repre-
sentation to better capture the patterns within each sentence.
While this seems like we are giving the model additional
information, it may aid its ability to generalize past training
examples.

4.4. Getting Better Word Candidates

We next test the approach’s efficacy by modifying the word
candidate generation process. As noted in previous sections,

Testing Results
Batch Size 128

Original Accuracy 98%
Accuracy Under Attack 90%

ASR 8.7%
Average Perturbed Word % 13.86%

Figure 8. We show the final performance of the trained policy on
the 70 evaluation examples. The 70 examples include 50 training
examples and 20 unseen examples. The policy is unable to gener-
alize past its training examples.

End-to-End Reinforcement Learning for Black-Box Adversarial Text Generation

up until now we have been using the nearest neighbor to the
original word’s embedding to use as a swapping candidate.
However, what commonly happens is this generates the orig-
inal word in a different tense. This small perturbation is
less likely to significantly alter the sentence’s classification
label. As result, we modify the approach by, for each word
in the sentence, generating a list of neighboring words and
taking the neighbor that shares the least number of charac-
ters with the original word. The results for this modification
are shown in Figure 9.

Figure 9. Training curves for the experiment where we apply addi-
tional constraints on the word candidate generation. We see that
performance is stronger by a commendable margin.

It is evident that the ASR is higher than when we used
the previous approach to word candidate generation. This
can be attributed to the higher likelihood of generating a
holistically different sentence from the original, increasing
the chance of changing the output label.

Testing Results
Original Accuracy 98%

Accuracy Under Attack 82%
ASR 16.33%

Average Perturbed Word % 20.29%

Figure 10. We show the final performance of the trained policy on
the 50 training examples when using the revised word candidate
generation method. We see higher ASR than when using the
original method.

What is interesting to note is that the average perturbed
word is notably higher in this approach than when using
the previous word candidate generation method. This might
come as a surprise, because we would expect that, with
words that are more dissimilar, each word would yield more
effect on the output label. However, if we look at the reward
function, we encourage the RL agent to swap out words only
if an adversarial example is possible. If it is not possible,
then the reward function encourages the agent to use the
”stop” action quickly to prevent itself from consistently
receiving λconstant. Since having better word candidates
makes it more likely for adversarial examples to be possible
given an input sentence, it is less likely to use the ”stop”
action earlier.

Due to time constraints, we were unable to construct abla-
tion tests on the number of neighbors that we generated for
each word. This would be a promising direction to pursue
in future work.

4.5. With Budget Constraints

Lastly, we test what happens when we insert constraints
on the number of words we could swap out in each exam-
ple sentence. We construct experiments where we vary
the number of c words we were allowed to swap out.
Note that c could be greater than the number of swap-
pable words in a given sentence. Therefore, we ensure
that the used value capplied on a given input sentence s
is capplied(s) = min(c, num swappable words(s)). We
show training curves for various values of c in Figure 11.
The final testing metrics are also reported in Figure 12.

We notice that having less constraint (meaning a higher
value for c) provided a higher attack success rate far quicker.
However, having a value of 10 for c achieved a higher reward
after a certain amount of epochs. This return difference may
simply be due to a smaller action space. We also combine
the constraint with the generation of stronger word candi-
dates. This yields far stronger performance than all previous
approaches so far. It is promising that the combination of
the two revisions yields stronger results. Future work would
be geared towards tuning these parameters and analyzing
their effects on performance further.

4.6. Discussion

While our results were not extremely promising for this
method, we still believe that RL-based approaches can per-
form comparably to other works at adversarial example gen-
eration. We attribute our poor performance to a few possible
factors. Primarily, the choice of dataset and limit of swap-
pable words hampers our adversarial example generation,
as we are only able to generate valid adversarial examples
slightly more than 10% of the time. The median length of
the input is 45 words and the median number of swappable

End-to-End Reinforcement Learning for Black-Box Adversarial Text Generation

Figure 11. The training curves with varying values for c and tog-
gling whether we use the revised word candidate generation algo-
rithm.

Testing Results
c = 10 c = 20 c = 20 w/ cands

Original Accuracy 98% 98% 98%
Accuracy Under Attack 91.84% 89.8% 81.63%

ASR 8.16% 10.2% 18.37%

Figure 12. We show the final performance of the trained policy on
the 50 training examples when we vary the max constraint and
whether or not we use the word candidate generation method.

words is 20; compared to related approaches, this number is
quite low and therefore suggests a reasonable explanation
for a lack of valid misclassifications. This seems an artifact
of the data itself, as the dataset was originally conceived to
be used in character-level situations and therefore includes
examples that are quite short. In fact, we were unable to
swap a single word in at least one example. Further, since
we use a limited replacement set, it is distinctly possible that
certain words lack replacements that meaningfully force
mis-classifications in a relevant direction, especially since
we have a 4-class downstream task as opposed to the typical
binary task. These issues combined with the lack of model
generalization seem to be the main cause of our results.

5. Conclusion and Future Work
In this paper, we approach adversarial text generation as
a reinforcement learning task. Using a Markov Decision
process, we define the states and actions to be the sentence
to be perturbed and the swapping of words in the sentence,
respectively. We then formulate our rewards to teach our
agent to create adversarial examples using the least possible
actions.

While our results show limited success in the different setups
we staged for our experiment, we point out several factors
that could be responsible. We suggest that further work on
different datasets or with better constraints for swappable
words could potentially yield better results.

References
Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivas-

tava, M., and Chang, K.-W. Generating natural language
adversarial examples. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 2890–2896, Brussels, Belgium, October-
November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1316. URL https:
//aclanthology.org/D18-1316.

Buck, C., Bulian, J., Ciaramita, M., Gesmundo, A., Houlsby,
N., Gajewski, W., and Wang, W. Ask the right ques-
tions: Active question reformulation with reinforcement
learning. CoRR, abs/1705.07830, 2017. URL http:
//arxiv.org/abs/1705.07830.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples, 2015.

Hasselt, H. v., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, pp. 2094–2100. AAAI Press, 2016.

Jia, R. and Liang, P. Adversarial examples for evaluating
reading comprehension systems, 2017.

Jin, D., Jin, Z., Zhou, J. T., and Szolovits, P. Is BERT really
robust? natural language attack on text classification
and entailment. CoRR, abs/1907.11932, 2019. URL
http://arxiv.org/abs/1907.11932.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

https://aclanthology.org/D18-1316
https://aclanthology.org/D18-1316
http://arxiv.org/abs/1705.07830
http://arxiv.org/abs/1705.07830
http://arxiv.org/abs/1907.11932

End-to-End Reinforcement Learning for Black-Box Adversarial Text Generation

Liu, P., Zhang, L., and Gulla, J. A. Pre-train, prompt and
recommendation: A comprehensive survey of language
modelling paradigm adaptations in recommender systems,
2023.

Maimon, G. and Rokach, L. A universal adversarial
policy for text classifiers. Neural Networks, 153:282–
291, sep 2022. doi: 10.1016/j.neunet.2022.06.018.
URL https://doi.org/10.10162Fj.neunet.
2022.06.018.

Morris, J. X., Lifland, E., Yoo, J. Y., and Qi, Y. Textattack:
A framework for adversarial attacks in natural language
processing. CoRR, abs/2005.05909, 2020. URL https:
//arxiv.org/abs/2005.05909.

Mrkšić, N., Séaghdha, D. , Thomson, B., Gašić, M., Rojas-
Barahona, L., Su, P.-H., Vandyke, D., Wen, T.-H., and
Young, S. Counter-fitting word vectors to linguistic con-
straints, 2016.

Pennington, J., Socher, R., and Manning, C. GloVe:
Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pp. 1532–1543,
Doha, Qatar, October 2014. Association for Computa-
tional Linguistics. doi: 10.3115/v1/D14-1162. URL
https://aclanthology.org/D14-1162.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks, 2014.

Sutton, R. S., McAllester, D., Singh, S., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Solla, S., Leen,
T., and Müller, K. (eds.), Advances in Neural Infor-
mation Processing Systems, volume 12. MIT Press,
1999. URL https://proceedings.neurips.
cc/paper_files/paper/1999/file/
464d828b85b0bed98e80ade0a5c43b0f-Paper.
pdf.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties
of neural networks, 2014.

Wang, X., Yang, Y., Deng, Y., and He, K. Adversarial train-
ing with fast gradient projection method against synonym
substitution based text attacks, 2020.

Wang, X., Wang, H., and Yang, D. Measure and improve
robustness in nlp models: A survey, 2022.

Wong, C. Dancin seq2seq: Fooling text classifiers with
adversarial text example generation, 2017. URL https:
//arxiv.org/abs/1712.05419.

Yang, X., Liu, W., Bailey, J., Tao, D., and Liu, W. Semantic-
preserving adversarial text attacks, 2023.

Zhang, W. E., Sheng, Q. Z., Alhazmi, A., and Li, C. Adver-
sarial attacks on deep learning models in natural language
processing: A survey, 2019.

Zhang, X., Zhao, J., and LeCun, Y. Character-level convolu-
tional networks for text classification. In Proceedings of
the 28th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’15, pp. 649–657,
Cambridge, MA, USA, 2015. MIT Press.

https://doi.org/10.10162Fj.neunet.2022.06.018
https://doi.org/10.10162Fj.neunet.2022.06.018
https://arxiv.org/abs/2005.05909
https://arxiv.org/abs/2005.05909
https://aclanthology.org/D14-1162
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://arxiv.org/abs/1712.05419
https://arxiv.org/abs/1712.05419

